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Surrogate for nonlinear time series analysis
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We present a surrogate for use in nonlinear time series analysis. This surrogate algorithm has significant
advantages over the most commonly used surrogates, in that it provides a more robust statistical test by
producing an entire population of surrogates that are consistent with the null hypothesis. We will show that for
the currently used surrogate algorithms, although individual surrogate files are consistent with the null hypoth-
esis the population of surrogates generated is not. The surrogate is tested on a linear stochastic process and a
continuous nonlinear system.
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I. INTRODUCTION

Performing statistical analysis on experimental data fr
nonlinear systems often involves testing a null hypothe
based on some nonlinear measure. Whether the measu
question is a traditional nonlinear measure such as the
relation dimension@1,2# or the Lyapunov exponent@3,4# or is
an experimentally motivated measure like the frequency
encounters with unstable periodic orbits@5,6#, surrogate data
is usually required to perform the test. The probability d
tributions of the statistical measures are typically not kno
a priori and often depend in very complex ways on vario
statistical properties of the data. By using surrogate data
can determine these distributions empirically.

The most commonly used techniques for generating
rogate data for the statistical analysis of nonlinear proce
include random shuffling of the original time series, Fouri
transformed surrogates@7#, amplitude adjusted Fourier
transformed~AAFT! surrogates@8#, and iterated AAFT sur-
rogates @9#. Each of these methods has strengths a
weaknesses with respect to the power of the null hypoth
that can be rejected, the computational complexity of
algorithm and the accuracy with which the method mod
the statistical properties of the data being analyzed.

In this paper we will discuss the difficulties and limita
tions of the simplest of these methods, the shuffled
AAFT surrogates, and how the iterated AAFT surrogate
tempts to resolve these issues. We will then discuss s
difficulties that have not been resolved with the implemen
tion of these surrogates. Finally, we present a surrogate
addresses these problems.

A. Shuffled surrogates

The simplest algorithm for generating surrogate data
random shuffling. A random permutation of the original da
file is made. All of the original data are included in a com
pletely random order. This method guarantees that the su
gate data will be consistent with the null hypothesis o
d-correlated random process, while exactly preserving
distribution of the original data. This algorithm is of limite
1063-651X/2001/64~4!/046128~6!/$20.00 64 0461
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usefulness because the only statistical property of the o
nal data that is preserved is the distribution. For exam
Theiler et al. showed that shuffled surrogates are unsuita
for a nonlinearity test based on calculations of the correlat
dimension@7#.

B. Fourier-transformed surrogates

Theileret al. went on to describe an algorithm for testin
the null hypothesis of a linear stochastic process that can
applied to data that is normally distributed. This meth
takes the discrete Fourier transform of the original data
then assigns a random phase to each positive frequency
ponent. The negative frequency components are assig
corresponding phases to assure that the inverse Fourier t
form will be real. The result is a time series with the sam
power spectrum as the original data, but which is in ev
other respect randomized.

C. Amplitude adjusted Fourier-transformed surrogates

The preceding method is not suitable when the origi
data is not normally distributed, since the Fourie
transformed surrogate will then have a different distributi
from the original data. The AAFT surrogate was develop
to resolve this limitation@9#. These surrogates attempt to te
the null hypothesis that the original data is from a line
stochastic process that has undergone a static nonlinear t
formation. The algorithm for generating this type of surr
gate data is described as follows:

~1! The original data is rescaled to a normal distributio
This is done by generating a time series of Gaussian w
noise and sorting it according to the ranking of the origin
data.

~2! A Fourier-transformed surrogate of the rescaled dat
constructed.

~3! The final surrogate is scaled to the distribution of t
original data by sorting the original data according to t
ranking of the Fourier-transformed surrogate.

This algorithm guarantees that the distribution will be p
served and approximately preserves the power spectrum
well. The ability of this algorithm to properly preserve th
©2001 The American Physical Society28-1
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power spectrum depends on the existence of a continu
static transformation from the original distribution to a no
mal distribution. In theory this is a requirement on the d
itself, i.e., the data distribution must be continuous. If t
data distribution includes singularities or sharp transitio
then the algorithm could produce unpredictable results
practice an additional limitation is noted. Since the under
ing distribution of the original data is, in general, unknow
the transformation must be determined empirically. The r
caling in step 1 constitutes an empirical transformation fr
the distribution of the original data to that of a specific fin
realization of a Gaussian distributed process. The resca
in step 3 then transforms from an independent realization
a different Gaussian distributed process back to the orig
data distribution. The forward and backward transformatio
are not exact inverses of each other, and this result
changes to the power spectrum of the final surrogate.
result of this alteration is to whiten the power spectrum
the original data@9#. Of course the amount of whitening tha
occurs depends on both the length of the time series~for long
time series the distribution will be very nearly continuou
reducing the effect! and on the degree to which the origin
distribution is non-Gaussian.

D. Iterated AAFT surrogates

A method was developed by Schreiber and Schmitz@9#
that addresses the issue of power spectrum whitening by
forming a series of iterations in which the power spectrum
an AAFT surrogate is adjusted back to that of the origi
data before the distribution is rescaled back to that of
original data. The process can be described as follows:

~1! An AAFT surrogate is generated using the proced
above. The Fourier amplitudes calculated in step 2 are
corded for later use.

~2! The surrogate is Fourier transformed, and its Fou
amplitudes are adjusted back to the amplitudes recorde
step 1.

~3! The result of step 2 is inverse Fourier transformed a
rescaled back to the original data distribution as in step 3
the AAFT algorithm.

~4! Steps 2 and 3 are repeated until the whitening of
power spectrum is sufficiently small.

The basic assumptions of this method are that, with e
iteration, the change to the distribution that occurs when
Fourier amplitudes are adjusted will be smaller than in
previous iteration, and that the alteration of the power sp
trum when the rescaling is performed will therefore also
smaller than in the previous iteration. In fact, Schreib
showed that, for a nonlinearly transformed autoregress
process, the iteration procedure will converge towards
power spectrum of the original data until a saturation poin
reached, where the Fourier amplitude adjustment is so s
that the rescaling puts the data into the exact order it
before the amplitude adjustment@9#.

II. DIFFICULTIES WITH CURRENT ALGORITHMS

As mentioned previously, for surrogate data to be use
properly test a null hypothesis, it is necessary that the su
04612
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gate data be consistent with the null hypothesis. It is cl
that by preserving the distribution and power spectrum of
original data while randomizing the data in all other respec
a surrogate file generated by the iterated AAFT algorit
will be consistent with the null hypothesis that the data w
drawn from a nonlinear static transformation of a linear s
chastic process. But in order to reject a null hypothesis, i
not sufficient for each surrogate file to individually satis
the null hypothesis. The entire population of surrogates m
satisfy the null hypothesis. In this case, this means that
the surrogates must be statistically independent realizat
of a nonlinear static transformation of a linear stochas
process.

The iterated AAFT surrogates do not satisfy this requi
ment. A set of statistically independent realizations of a n
linear static transformation of a linear stochastic process
all have slightly different power spectra. Given a pow
spectrum estimatePk wherek is the frequency bin, the vari
ance ofPk over the set of surrogates is given by

sk
25Pk

2 . ~1!

That is, the variation in the power from one file to the next
any given frequency bin is equal to the square of the amo
of power in that frequency bin@10#. It is because of this high
variance that power spectra are typically averaged over
eral frequency bins, sacrificing frequency resolution for
more accurate power spectrum estimate. Equation~1! be-
comes

s i
25

1

N
Pi

2 , ~2!

where N is the number of frequency bins averaged ani
denotes the new larger frequency bins.

The iterated AAFT surrogates will produce populatio
that, by construction, all have exactly the same power sp
trum estimates. These populations of surrogates are there
not consistent with the null hypothesis. It is clear that th
issue can result in erroneous results for statistical tests. If
measured statistic being analyzed is sensitive to variation
the power spectrum of the data, then it is likely that t
variance of the statistic will be much smaller for the popu
tion of surrogates than it would be if the null hypothesis we
actually true, resulting in a false-positive statistic. This effe
has been demonstrated in a recent paper by Kugiumtzis@11#,
where the very small variance in power spectra for the AA
and iterated AAFT surrogates results in false rejections us
a nonlinear predictor statistic. This difficulty with spectr
variance of surrogate data has also been discussed
Schreiber and Schmitz in a recent review article@12#.

A. Digitally filtered shuffled surrogates

We will now present a surrogate algorithm that resolv
the issues described above. This algorithm, which we w
refer to as the digitally filtered, shuffled~DFS! surrogate al-
gorithm, convolves a random permutation of the data wit
response function based on the estimated power spectru
the data. Since each surrogate is made from a different
8-2
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SURROGATE FOR NONLINEAR TIME SERIES ANALYSIS PHYSICAL REVIEW E64 046128
dom permutation, each is by construction a statistically in
pendent realization of the process. The procedure for ge
ating DFS surrogates is as follows:

~1! Estimate the power spectrum of the data using ov
lapping windowed Fourier transforms. The data should
demeaned for this calculation.

~2! Calculate a response function by taking the squ
root of the power spectrum estimate and taking its inve
Fourier transform.

~3! Make a random permutation of the data~a shuffled
surrogate as described in Sec. I A above!.

~4! Digitally filter the shuffled surrogate by convolving
with the response function. The shuffled surrogate should
demeaned before filtering.

~5! Rescale the filtered surrogate back to the original d
distribution. The rescaling can be done as for the AA
surrogates.

By using an overlapping windowed Fourier transform
estimate the power spectrum, the accuracy of the estim
can be greatly improved. This is done by calculating
Fourier transform ofN samples of lengthL, each overlapping
by 50% @13#. These samples are multiplied by a windowin
function such as the Welch window@14#. Any other favorite
windowing function may be substituted for the Welch fun
tion.

wi512S 2i 2~L21!

~L11! D 2

, ~3!

where i ranges from 0 toL21. This windowing function
goes to zero at both ends, reducing any high-frequency
facts due to lack of periodicity. The power spectrum estim
made with this technique will thus have a variance given

s i
25

11

9N
Pi

2 . ~4!

Because a demeaned, shuffled surrogate has a w
power spectrum, the convolution with the response funct
will result in a time series with the appropriate power sp
trum. This also allows variations in the power spectrum fro
one surrogate to the next, since each surrogate is made
a statistically independent shuffled surrogate.

B. Rescaling and power spectrum whitening

As with the AAFT surrogates, the process of rescaling
the original data distribution alters the power spectrum.
iterated method, similar to what is used for the itera
AAFT surrogates, can be used to reduce the whitening.
procedure for this is to adjust repeatedly the Fourier am
tudes and subsequently to rescale the result. The amplit
to which we should adjust are not the Fourier amplitudes
the original data, but instead of the surrogate just before
first rescaling~step 4!.

III. COMPARISON OF METHODS

To demonstrate that the DFS algorithm is properly p
serving the linear properties of the data we will initially loo
04612
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at a simple nonlinearly transformed autoregression~AR!
process,

xn1150.7xn1jn ,

yn5xn
3 , ~5!

wherejn is Gaussian white noise.
First we will establish that the DFS algorithm is produ

ing the proper degree of variability from one surrogate file

FIG. 1. Histograms of the measurea for the DFS surrogates~a!,
AAFT surrogates~b!, and 100 realizations of the actual AR proce
~c!.
8-3
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KEVIN T. DOLAN AND MARK L. SPANO PHYSICAL REVIEW E 64 046128
the next. To do this we generate a time series from the ab
AR process of length 2048 points. We then generate a po
lation of 100 DFS surrogates. Next we introduce the follo
ing measure of spectral variability:

a5
1

N (
i 51

N
~Pi2 P̄i !

2

P̄i
2

, ~6!

whereN is the number of frequency bins~in this case 1025!,
Pi is the power in thei th frequency bin of the surrogate, an
P̄i is the average power in thei th frequency bin, average
over the other 99 surrogate files. This yields a value ofa for
each surrogate.

If our hypothesis that each surrogate is an independ
realization of the same process is true, then we can pre
the following:

FIG. 2. Power spectrum estimate of the AR process~circles!,
DFS surrogates~squares!, and AAFT surrogates~diamonds!. A log
scale was used to show variations more precisely. Sixty-four
quency bins were used to average out statistical fluctuations.

FIG. 3. Distribution of Ro¨ssler section data: Note the high
non-Gaussian, multimodal distribution.
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2&5 P̄i

2 , ~7!

which implies that the expectation value ofa should be 1.
Figure 1~a! shows the distribution ofa for the 100 DFS
surrogates. Figure 1~b! shows the distribution for 100 AAFT
surrogates, and Fig. 1~c! shows the measurea for 100 inde-
pendent realizations of the actual AR process as a con
example.

We can see from Fig. 1 that the DFS surrogates prese
the appropriate degree of variability between surroga
whereas the AAFT surrogates show a much lower degre
variability. In fact, it is clear from the description of th
AAFT algorithm that the only reasona is not zero for all of
the AAFT files is that the whitening effect described abo
introduces a small amount of variability.

This suggests the question, how well have the AAFT a
DFS surrogate algorithms preserved the power spectrum
the data? We have calculated the power spectrum of
original AR data, as well as the spectra of the AAFT a
DFS surrogates. The results are shown in Fig. 2.

We see that both surrogates properly preserve the po
spectrum of this data. Although the power spectrum whit
ing effect due to the rescaling is nonzero for this data, i
insignificant. This is not always the case though, particula
when the data is strongly non-Gaussian.

To demonstrate the iterated version of the DFS algorith
we look at a classic nonlinear system, the Ro¨ssler system
@15#.

ẋ52~y1z!,

ẏ5x1ay,

ż5b1z~x2c!1A2Dj~ t !, ~8!

wherea5b50.2, c55.7. Dynamical noise was also adde
wherej(t) is Gaussian white noise with zero mean and u

-

FIG. 4. Power spectra of the original Ro¨ssler section data
~circles!, DFS surrogates~squares!, and AAFT surrogates~dia-
monds!. Note the significant systematic increase in power at
lower frequencies due to the power spectrum whitening effect.
8-4
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SURROGATE FOR NONLINEAR TIME SERIES ANALYSIS PHYSICAL REVIEW E64 046128
variance, and the intensityD50.01. The Ro¨ssler system is
chaotic for these parameter values. A Poincare´ section of this
data was made by measuringy at every positive zero cross
ing of x. Such, 2048 crossings were recorded. Figure 3 sh
the distribution of this data.

Once again 100 surrogates of both the DFS and AAF
type were made. Figure 4 shows the power spectrum of
surrogates compared to that of the original data. In this c
the whitening due to the rescaling is not negligible. W
therefore apply the iterated technique described above.
ure 5 shows the spectra of ten iterations of the DFS
AAFT algorithms. Note that both surrogates converge
wards the proper spectrum at approximately the same ra

This demonstrates that the iterated version of the D
algorithm can compensate for the power spectrum whiten
caused by the rescaling. But what effect has this itera
process had on the variability of the surrogates? We n
apply the measure defined in Eq.~6! to each iteration of the
surrogate process. Figure 6 shows the results of this anal

The iterated DFS algorithm preserves the proper varia

FIG. 5. Power spectra for iterated DFS surrogates~a! and iter-
ated AAFT surrogates~b!. The dotted line represents the power
the actual data, and the solid lines show consecutive iteration
the surrogate algorithms.
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ity throughout the iteration process. As we would expect,
variability of the AAFT surrogates goes to zero as we itera
since the variability is entirely due to the whitening in th
case.

IV. DISCUSSION

We have clearly shown that the AAFT and iterated AAF
algorithms do not properly test the null hypothesis of a no
linear static transformation of a linear stochastic process.
DFS surrogate algorithm described herein has been dem
strated not only to preserve the power spectrum of the or
nal data as well as the AAFT algorithm, but also to produ
the appropriate intersurrogate variability. Likewise the ite
ated DFS algorithm converges to the proper spectrum jus
quickly as the iterated AAFT algorithms, but without sac
ficing its variability properties. For statistical tests in whic
the variability of the power spectra estimates is not a sign
cant factor, the AAFT methods can still produce statistica
meaningful results. But in general, to formally reject the n
hypothesis described above, the AAFT surrogates are
sufficient.

It should further be noted that the computational compl
ity of the DFS and the iterated DFS algorithms are about
same as that of the AAFT and iterated AAFT algorithm
This algorithm can also be modified to operate in the ti
domain, which may be more efficient for data streams t
are much longer than the required frequency resolution.
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FIG. 6. The variability measurea for each iteration of the DFS
~squares! and AAFT ~diamonds! algorithms. The error bars repre
sent the 99% confidence interval given by the smallest and lar
values ofa for each iteration.
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