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Surrogate for nonlinear time series analysis
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We present a surrogate for use in nonlinear time series analysis. This surrogate algorithm has significant
advantages over the most commonly used surrogates, in that it provides a more robust statistical test by
producing an entire population of surrogates that are consistent with the null hypothesis. We will show that for
the currently used surrogate algorithms, although individual surrogate files are consistent with the null hypoth-
esis the population of surrogates generated is not. The surrogate is tested on a linear stochastic process and a
continuous nonlinear system.
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I. INTRODUCTION usefulness because the only statistical property of the origi-
nal data that is preserved is the distribution. For example,
Performing statistical analysis on experimental data fronirheiler et al. showed that shuffled surrogates are unsuitable
nonlinear systems often involves testing a null hypothesisor a nonlinearity test based on calculations of the correlation
based on some nonlinear measure. Whether the measuredimension[7].
guestion is a traditional nonlinear measure such as the cor-
relation dimensiof1,2] or the Lyapunov exponei8,4] or is B. Fourier-transformed surrogates
an experimentally motivated measure like the frequency of , . . .
encounters with unstable periodic orHifs6], surrogate data Theileret al. W(_ant on tp describe an falgonthm for testing
is usually required to perform the test. The probability dis-the null hypothesis of a linear stochastic process that can be

tributions of the statistical measures are typically not knowrPPlied to data that is normally distributed. This method
takes the discrete Fourier transform of the original data and

a priori and often depend in very complex ways on various X =
statistical properties of the data. By using surrogate data wi§€" ssigns a random phase to each positive frequency com-

can determine these distributions empirically. ponent. The negative frequency components are assigned
The most commonly used techniques for generating Surz_:orrespondmg phases to assure th_at the inverse Fourier trans-

rogate data for the statistical analysis of nonlinear processd@™M Will be real. The result is a time series with the same

include random shuffling of the original time series, Fourier-POWer spectrum as the original data, but which is in every

transformed surrogate§7], amplitude adjusted Fourier- Other respect randomized.

transformed AAFT) surrogate$8], and iterated AAFT sur-

rogates [9]. Each of these methods has strengths and C. Amplitude adjusted Fourier-transformed surrogates

weaknesses with respect to the power of the null hypothesis The preceding method is not suitable when the original
that can be rejected, the computational complexity of thejata is not normally distributed, since the Fourier-
algorithm and the accuracy with which the method modelsransformed surrogate will then have a different distribution
the statistical properties of the data being analyzed. from the original data. The AAFT surrogate was developed
In this paper we will discuss the difficulties and limita- to resolve this limitatiori9]. These surrogates attempt to test
tions of the simplest of these methods, the shuffled anghe null hypothesis that the original data is from a linear
AAFT surrogates, and how the iterated AAFT surrogate atstochastic process that has undergone a static nonlinear trans-
temptS to reSOIVe these iSSUeS. We W|" then diSCUSS Somrmaﬂon_ The a|gorithm for generating this type of surro-
difficulties that have not been resolved with the implementagate data is described as follows:
tion of these surrogates. Finally, we present a surrogate that (1) The original data is rescaled to a normal distribution.
addresses these problems. This is done by generating a time series of Gaussian white
noise and sorting it according to the ranking of the original
data.
(2) A Fourier-transformed surrogate of the rescaled data is
The simplest algorithm for generating surrogate data isonstructed.
random shuffling. A random permutation of the original data  (3) The final surrogate is scaled to the distribution of the
file is made. All of the original data are included in a com- original data by sorting the original data according to the
pletely random order. This method guarantees that the surreanking of the Fourier-transformed surrogate.
gate data will be consistent with the null hypothesis of a This algorithm guarantees that the distribution will be pre-
o-correlated random process, while exactly preserving theerved and approximately preserves the power spectrum as
distribution of the original data. This algorithm is of limited well. The ability of this algorithm to properly preserve the

A. Shuffled surrogates
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power spectrum depends on the existence of a continuougate data be consistent with the null hypothesis. It is clear
static transformation from the original distribution to a nor- that by preserving the distribution and power spectrum of the
mal distribution. In theory this is a requirement on the dataoriginal data while randomizing the data in all other respects,
itself, i.e., the data distribution must be continuous. If thea surrogate file generated by the iterated AAFT algorithm
data distribution includes singularities or sharp transitionswill be consistent with the null hypothesis that the data were
then the algorithm could produce unpredictable results. Irdrawn from a nonlinear static transformation of a linear sto-
practice an additional limitation is noted. Since the underly-chastic process. But in order to reject a null hypothesis, it is
ing distribution of the original data is, in general, unknown, not sufficient for each surrogate file to individually satisfy
the transformation must be determined empirically. The resthe null hypothesis. The entire population of surrogates must
caling in step 1 constitutes an empirical transformation fromsatisfy the null hypothesis. In this case, this means that all
the distribution of the original data to that of a specific finite the surrogates must be statistically independent realizations
realization of a Gaussian distributed process. The rescalingf a nonlinear static transformation of a linear stochastic
in step 3 then transforms from an independent realization ofrocess.

a different Gaussian distributed process back to the original The iterated AAFT surrogates do not satisfy this require-
data distribution. The forward and backward transformationsnent. A set of statistically independent realizations of a non-
are not exact inverses of each other, and this results ilinear static transformation of a linear stochastic process will
changes to the power spectrum of the final surrogate. Thall have slightly different power spectra. Given a power
result of this alteration is to whiten the power spectrum ofspectrum estimat®, wherek is the frequency bin, the vari-
the original datd9]. Of course the amount of whitening that ance ofP, over the set of surrogates is given by

occurs depends on both the length of the time séftadong

time series the distribution will be very nearly continuous, oi=Pg. (1)
reducing the effegtand on the degree to which the original . o . )
distribution is non-Gaussian. That is, the variation in the power from one file to the next in

any given frequency bin is equal to the square of the amount
of power in that frequency bifiL0]. It is because of this high
variance that power spectra are typically averaged over sev-
A method was developed by Schreiber and Schififz  eral frequency bins, sacrificing frequency resolution for a

that addresses the issue of power spectrum whitening by pefore accurate power spectrum estimate. Equationbe-
forming a series of iterations in which the power spectrum ofcomes

an AAFT surrogate is adjusted back to that of the original
data before the distribution is rescaled back to that of the > 1
original data. The process can be described as follows: i :Npi ' @

(1) An AAFT surrogate is generated using the procedure
above. The Fourier amplitudes calculated in step 2 are reyhere N is the number of frequency bins averaged and
corded for later use. denotes the new larger frequency bins.

(2) The surrogate is Fourier transformed, and its Fourier The iterated AAFT surrogates will produce populations
amplitudes are adjusted back to the amplitudes recorded imat, by construction, all have exactly the same power spec-
step 1. trum estimates. These populations of surrogates are therefore

(3) The result of step 2 is inverse Fourier transformed anchot consistent with the null hypothesis. It is clear that this
rescaled back to the original data distribution as in step 3 ofssue can result in erroneous results for statistical tests. If the

D. Iterated AAFT surrogates

the AAFT algorithm. _ o measured statistic being analyzed is sensitive to variations in
(4) Steps 2 and 3 are repeated until the whitening of thehe power spectrum of the data, then it is likely that the
power spectrum is sufficiently small. variance of the statistic will be much smaller for the popula-

The basic assumptions of this method are that, with eaction of surrogates than it would be if the null hypothesis were
iteration, the change to the distribution that occurs when thectually true, resulting in a false-positive statistic. This effect
Fourier amplitudes are adjusted will be smaller than in thenas been demonstrated in a recent paper by Kugiurritis
previous iteration, and that the alteration of the power specwhere the very small variance in power spectra for the AAFT
trum when the rescaling is performed will therefore also beand iterated AAFT surrogates results in false rejections using
smaller than in the previous iteration. In fact, Schreibera nonlinear predictor statistic. This difficulty with spectral
showed that, for a nonlinearly transformed autoregressioRariance of surrogate data has also been discussed by
process, the iteration procedure will converge towards th&chreiber and Schmitz in a recent review art{dé].
power spectrum of the original data until a saturation point is
reached, where the Fourier amplitude adjustment is so small

- : . A. Digitally filtered shuffled surrogates
that the rescaling puts the data into the exact order it had

before the amplitude adjustmelig]. We will now present a surrogate algorithm that resolves
the issues described above. This algorithm, which we will
Il DIFEICULTIES WITH CURRENT ALGORITHMS refer to as the digitally filtered, shuffla@®FS) surrogate al-

gorithm, convolves a random permutation of the data with a
As mentioned previously, for surrogate data to be used toesponse function based on the estimated power spectrum of
properly test a null hypothesis, it is necessary that the surradhe data. Since each surrogate is made from a different ran-
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dom permutation, each is by construction a statistically inde- 204 (a) 1
pendent realization of the process. The procedure for gener-
ating DFS surrogates is as follows:

(1) Estimate the power spectrum of the data using over-
lapping windowed Fourier transforms. The data should be
demeaned for this calculation.

(2) Calculate a response function by taking the square
root of the power spectrum estimate and taking its inverse
Fourier transform.

(3) Make a random permutation of the dat shuffled
surrogate as described in Sec. | A abpve

(4) Digitally filter the shuffled surrogate by convolving it
with the response function. The shuffled surrogate should be
demeaned before filtering. 0 . . .

(5) Rescale the filtered surrogate back to the original data 0.0 0.5 1.0 1.5 2.0
distribution. The rescaling can be done as for the AAFT (b) m
surrogates. 307

By using an overlapping windowed Fourier transform to .
estimate the power spectrum, the accuracy of the estimate € 257
can be greatly improved. This is done by calculating the
Fourier transform oN samples of length, each overlapping
by 50%(13]. These samples are multiplied by a windowing
function such as the Welch windop4]. Any other favorite
windowing function may be substituted for the Welch func-
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wherei ranges from 0 toL—1. This windowing function 0.0 0.5 1.0 1.5 2.0
goes to zero at both ends, reducing any high-frequency arti- 54 _
facts due to lack of periodicity. The power spectrum estimate (c)
made with this technique will thus have a variance given by *
11 S 15-
_ 2 = .
3
Because a demeaned, shuffled surrogate has a whiteet 107 in
power spectrum, the convolution with the response function ‘G
will result in a time series with the appropriate power spec- ¢
trum. This also allows variations in the power spectrum from £ 5
one surrogate to the next, since each surrogate is made from
a statistically independent shuffled surrogate.
I
0 1 1 1
B. Rescaling and power spectrum whitening 0.0 0.5 1.0 1.5 2.0

As with the AAFT surrogates, the process of rescaling to FIG. 1. Histograms of the measusefor the DFS surrogate@),
the original data distribution alters the power spectrum. APAAFT surrogategb), and 100 realizations of the actual AR process
iterated method, similar to what is used for the iterated(©).

AAFT surrogates, can be used to reduce the whitening. The

procedure for this is to adjust repeatedly the Fourier ampliat a simple nonlinearly transformed autoregressiéir)
tudes and subsequently to rescale the result. The amplitud@socess,

to which we should adjust are not the Fourier amplitudes of

the original data, but instead of the surrogate just before the Xn+1=0.Mp+ &,

first rescaling(step 4.
Yn=X5, (5)

Il. COMPARISON OF METHODS . . . .
where¢, is Gaussian white noise.

To demonstrate that the DFS algorithm is properly pre- First we will establish that the DFS algorithm is produc-
serving the linear properties of the data we will initially look ing the proper degree of variability from one surrogate file to

046128-3



KEVIN T. DOLAN AND MARK L. SPANO PHYSICAL REVIEW E 64 046128

4
3_
2
m m
= 5 =
c 107 c
3 A 3
g 9 g
« 51 S
— 4 N
Lo L
) 31 )
2 2
o] 2 O
o o
10*7
T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Frequency Bin Frequency Bin
FIG. 2. Power spectrum estimate of the AR procésecles, FIG. 4. Power spectra of the original ‘Bsler section data

DFS surrogategsquares and AAFT surrogate@diamonds. A log (circles, DFS surrogategsquarey and AAFT surrogateddia-
scale was used to show variations more precisely. Sixty-four fremonds. Note the significant systematic increase in power at the
quency bins were used to average out statistical fluctuations. lower frequencies due to the power spectrum whitening effect.

the next. To do this we generate a time series from the above ((P; —Ei)2>=5iz, (7)
AR process of length 2048 points. We then generate a popu-
lation of 100 DFS surrogates. Next we introduce the follow-which implies that the expectation value efshould be 1.
ing measure of spectral variability: Figure 1a) shows the distribution ofx for the 100 DFS
surrogates. Figure(th) shows the distribution for 100 AAFT
L E 2 surrogates, and Fig(d) shows the measure for 100 inde-
a=— 2 ) (6) pendent realizations of the actual AR process as a control
N < 52 example.
We can see from Fig. 1 that the DFS surrogates preserve
. o the appropriate degree of variability between surrogates
whereN Is the nymbgr of frequency 'bmim this case 1025 whereas the AAFT surrogates show a much lower degree of
Pi is the power in théth frequency bin of the surrogate, and \ 5 iapility. In fact, it is clear from the description of the
P; is the average power in theh frequency bin, averaged AAFT algorithm that the only reasoa is not zero for all of
over the other 99 surrogate files. This yields a value:ddr  the AAFT files is that the whitening effect described above
each surrogate. introduces a small amount of variability.

If our hypothesis that each surrogate is an independent Thjs suggests the question, how well have the AAFT and
realization of the same process is true, then we can predi¢Fs surrogate algorithms preserved the power spectrum of
the following: the data? We have calculated the power spectrum of the

original AR data, as well as the spectra of the AAFT and
40+ DFS surrogates. The results are shown in Fig. 2.

We see that both surrogates properly preserve the power
spectrum of this data. Although the power spectrum whiten-
ing effect due to the rescaling is nonzero for this data, it is
insignificant. This is not always the case though, particularly
when the data is strongly non-Gaussian.

To demonstrate the iterated version of the DFS algorithm,
we look at a classic nonlinear system, thesBler system
[15].

30+
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FIG. 3. Distribution of Rasler section data: Note the highly wherea=b=0.2, c=5.7. Dynamical noise was also added,
non-Gaussian, multimodal distribution. where&(t) is Gaussian white noise with zero mean and unit
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FIG. 6. The variability measure for each iteration of the DFS
105 (squares and AAFT (diamonds$ algorithms. The error bars repre-
sent the 99% confidence interval given by the smallest and largest
. 61 values ofa for each iteration.
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g 2] ity throughout the iteration process. As we would expect, the
8 variability of the AAFT surrogates goes to zero as we iterate,
& 10 since the variability is entirely due to the whitening in this
g ] case.
o M :
HAS'Y
i , IV. DISCUSSION
T T T T T T T
0 10 20 30 40 50 60 We have clearly shown that the AAFT and iterated AAFT
Frequency Bin algorithms do not properly test the null hypothesis of a non-

linear static transformation of a linear stochastic process. The
FIG. 5. Power spectra for iterated DFS surrogdsand iter-  DFS surrogate algorithm described herein has been demon-
ated AAFT surrogateth). The dotted line represents the power of gtrated not only to preserve the power spectrum of the origi-
the actual data, anpl the solid lines show consecutive iterations ¢{5| data as well as the AAFT algorithm, but also to produce
the surrogate algorithms. the appropriate intersurrogate variability. Likewise the iter-
ated DFS algorithm converges to the proper spectrum just as
quickly as the iterated AAFT algorithms, but without sacri-
ficing its variability properties. For statistical tests in which
the variability of the power spectra estimates is not a signifi-
) . ) cant factor, the AAFT methods can still produce statisticall
ing of x. Such, 2048 crossings were recorded. Figure 3 showﬁﬁeaningful results. But in general, to forEnaIIy reject the nuI)I/

the distribution of this data. hypothesis described above, the AAFT surrogates are not

Once again 100 surrogates of both the DFS and AAFT'sufficient.

gﬁﬁ?owstrssrgg%e.af;%ug 31:thg1yvtiéhgrip?rglerdZ'?aeCItr:utmsOI;:s]e It should further be noted that the computational complex-
the gh'ten' dp o th I 9 ¢ .I' ible. W ﬁy of the DFS and the iterated DFS algorithms are about the

whitening due to the rescaiing 15 not neggibie. Weo o a9 that of the AAFT and iterated AAFT algorithms.
therefore apply the iterated technique described above. F%his algorithm can also be modified to operate in the time

ure 5 shows the spectra of ten iterations of the DFS an ! , .
AAFT algorithms. Note that both surTogates converge to- omain, which may be more efficient for data streams that

. are much longer than the required frequency resolution.

wards the proper spectrum at approximately the same rate.
This demonstrates that the iterated version of the DFS

algorithm can compensate for the power spectrum.whitening ACKNOWLEDGMENTS
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